Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared.

نویسندگان

  • Eric J Stanton
  • Nicolas Volet
  • John E Bowers
چکیده

A resonator is characterized with two cascaded arrayed waveguide gratings (AWGs) in a ring formation. From this structure, the on-chip transmittance of a single AWG is extracted, independent of coupling efficiency. It provides improved measurement accuracy, which is essential for developing AWGs with extremely low loss. Previous methods normalize the off-chip AWG transmittance to that of a reference waveguide with identical coupling, leading to an uncertainty of ∼14 % on the extracted on-chip AWG transmittance. It is shown here that the proposed "AWG-ring" method reduces this value to ∼3 %. A low-loss silicon AWG and an AWG-ring are fabricated. Channel losses with <2 dB are found, with a crosstalk per channel approaching -30 dB. Such an efficient wavelength multiplexing device is beneficial for the integration of spectroscopic sensors, multi-spectral lasers, and further progress in optical communication systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silicon arrayed waveguide gratings at 2.0-μm wavelength characterized with an on-chip resonator.

Low-loss arrayed waveguide gratings (AWGs) are demonstrated at a 2.0-μm wavelength. These devices promote rapidly developing photonic applications, supported by the recent development of mid-infrared lasers integrated on silicon (Si). Multi-spectral photonic integrated circuits at 2.0-μm are envisioned since the AWGs are fabricated with the 500-nm-thick Si-on-insulator platform compatible with ...

متن کامل

Design of Arrayed Waveguide Grating based Optical Switch for High Speed Optical Networks

This paper demonstrates the design of an Arrayed Waveguide Gratings (AWG) based optical switch. In the design both physical and network layer analysis is performed. The physical layer power and noise analysis is done to obtain Bit Error Rate (BER). This has been found that at the higher bit rates, BER is not affected with number of buffer modules. Network layer analysis is done to obtain perfor...

متن کامل

Optical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings

Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...

متن کامل

Experimental Demonstration of Compact 16 channels-50 GHz Si3N4 Arrayed Waveguide Grating

Arrayed waveguide gratings (AWGs) are one of the key components for dense wavelength division multiplexing (DWDM) systems enabling wavelength(de)multiplexing and routing scaling to a large number of channels with graceful increases in optical losses. AWGs are widely used in telecommunications, datacom, optical sensing, optical spectroscopy, and many other applications. Such a wide range of appl...

متن کامل

Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results

Astrophotonics is the next-generation approach that provides the means to miniaturize near-infrared (NIR) spectrometers for upcoming large telescopes and make them more robust and inexpensive. The target requirements for our spectrograph are: a resolving power of ⇠3000, wide spectral range (J and H bands), free spectral range of about 30 nm, high on-chip throughput of about 80% (-1dB) and low c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 25 24  شماره 

صفحات  -

تاریخ انتشار 2017